ELECTROPHILIC AROMATIC SUBSTITUTION I

Department of Pharmaceutical Chemistry

Dr. Husam Hamza

ELECTROPHILIC AROMATIC SUBSTITUTION

Above and below the plane of the benzene ring there \succ is a cloud of π electrons. Because of resonance

It is not surprising that *in its typical reactions the benzene ring serves as a source of electrons*, that is, as a base. The compounds with which it reacts are deficient in electrons, that is, are *electrophilic reagents* or *acids*. Just as the typical reactions of the alkenes are electrophilic addition reactions, so the typical reactions of the benzene ring are electrophilic *substitution reactions*

These reactions are characteristic not only of benzene itself, but of the benzene ring wherever it is found and, indeed, of many aromatic rings, benzenoid and nonbenzenoid

Electrophilic Aromatic Substitution Reactions Ar = aryl, any aromatic group with attachment directly to ring carbon Nitration.AtH + HONO₂ $\xrightarrow{H_2SO_4}$ ArNO₂ + H₂O A nitro compound Sulfonation .2 $ArH + HOSO_3H \xrightarrow{SO_3} ArSO_3H + H_2O$ A sulfonic acid **Halogenation .3** $ArH + Cl_2 \xrightarrow{Fe} ArCl + HCl$ An aryl chloride $ArH + Br_2 \xrightarrow{Fe} ArBr + HBr$ An aryl bromide 4. Friedel-Crafts alkylation

> $ArH + RCl \xrightarrow{AlCl_3} ArR + HCl$ An alkylbenzene

5. Nitrosation

 $ArH + HONO \longrightarrow ArN=O + H_2O$ A nitroso compound

Only for highly reactive ArH

6. Diazo coupling

 $ArH + Ar'N_2 + X^- \longrightarrow ArN = NAr' + HX$ A diazonium salt An azo compound

Only for highly reactive ArH

Effect of substituent groups

- Like benzene, toluene undergoes electrophilic aromatic > substitution: sulfonation
- There are three possible monosulfonation products, this reaction actually yields appreciable amounts of only two of them: the **o**- and **p**-isomers

A group that makes the ring more reactive than benzene is called **an activating group**. A group that makes the ring less reactive than benzene is called a **deactivating** group A group that causes attack to occur chiefly at positions ortho and para to it is called an ortho, para director. A group that causes attack to occur chiefly at positions *meta* to it is called a meta director

Classification of substituent groups

All groups fall into one of two classes: activating and *ortho .para* directing, or deactivating and *meta* directing. The halogens are in a class by themselves, being deactivating but *ortho.para*-directing.
 EFFECT OF GROUPS ON ELECTROPHILIC AROMATIC SUBSTITUTION

Activating: Ortho, para Directors

Strongly activating ---NH₂ (---NHR, ---NR₂) ---OH

Moderately activating -OCH₃ (-OC₂H₅, etc.) -NHCOCH₃

Weakly activating ---C₆H₅ ---CH₃ (---C₂H₅, etc.) Deactivating: Meta Directors

---NO2 ---N(CH3)3⁺ ---CN ---COOH (---COOR) ---SO3H ---CHO, ---COR

Deactivating: Ortho, para Directors ---F, ---Cl, ---Br, ---I Orientation in disubstituted benzenes

The two substituents may be located so that the directive influence of one *reinforces* that of the other; for example, in I, II, and III the orientation clearly must be that indicated by the arrows.

When the directive effect of one group **opposes** that of the other, it may be difficult to predict the major product; in such cases complicated mixtures of several products are often obtained. (a) Strongly activating groups generally win out →
 over deactivating or weakly activating groups. The differences in directive power in the sequence

 $-NH_2$, $-OH > -OCH_3$, $-NHCOCH_3 > -C_6H_5$, $-CH_3 > meta$ directors

There must be, however, a fairly large difference in the effects of the two groups for clear-cut results; otherwise one gets results like these:

(b) There is often little substitution between two groups that are meta to each other.

